DPS - 2 (Heat Transfer)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solutionon Website:-

https://physicsaholics.com/home/courseDetails/68

https://youtu.be/6LNeBN2m0dc

https://physicsaholics.com/note/notesDetalis/83

Q 1. A hollow conducting sphere has inner radius R and outer radius $2 R$. Temperatures of inner cavity and surroundings are T_{1} and $T_{2}\left(T_{2}<T_{1}\right)$ respectively. These temperatures are not changing with time.
Temperature gradient in sphere at distance r from centre is directly proportional to
(a) r
(b) $1 / \mathrm{r}$
(c) r^{2}
(d) None of the above

Q 2. Five rods of the same dimensions are arranged as shown. They have thermal conductivities $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5}. When points A and B are maintained at different temperatures, no heat flows through the central rod. It follows that

(a) $\mathrm{k}_{1}=\mathrm{k}_{4}$ and $\mathrm{k}_{2}=\mathrm{k}_{3}$
(b) $\mathrm{k}_{1} / \mathrm{k}_{4}=\mathrm{k}_{2} / \mathrm{k}_{3}$
(c) $\mathrm{k}_{1} \mathrm{k}_{4}=\mathrm{k}_{2} \mathrm{k}_{3}$
(d) $\mathrm{k}_{1} \mathrm{k}_{2}=\mathrm{k}_{3} \mathrm{k}_{4}$

Q 3. Ice starts freezing in a lake with water at $0^{\circ} \mathrm{C}$ when the atmospheric temperature is $10^{\circ} \mathrm{C}$. If the time taken for 1 cm of ice to be formed is 12 minutes the time taken for the thickness of the ice to change from 1 cm to 2 cm will be
(A) 12 minutes
(B) less than 12 minutes
(C) more than 12 minutes but less than 24 minutes
(D) more than 24 minutes

Q 4. A pond of water at $0^{c} \mathrm{C}$ is covered with layer of ice 4 cm thick if air temperature is $10^{\circ} \mathrm{C}$ (constant), how long it takes ice thickness to increase to 8 cm ? $\mathrm{K}_{\text {ice }}=2 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, $\mathrm{L}_{\mathrm{f}}=80 \mathrm{cal} / \mathrm{gm}, \rho_{\text {ice }}=900 \mathrm{~kg} / \mathrm{m}^{3}$.

Q 5. Water in pond is at $0^{\circ} \mathrm{C}$. The temperature of ambient air is constant at $-20^{\circ} \mathrm{C}$. Thickness x of ice film in centimeter increases with t in second according to relation (density of ice $=0.917 \mathrm{~g} / \mathrm{cc}$, conductivity of ice $=0.005 \mathrm{cgs}$ and latent heat of ice $=80$ cal/gm)
(a) $\mathrm{x}=2.73 \times 10^{-3} \mathrm{t}$
(b) $x^{2}=2.73 \times 10^{-3} \mathrm{t}$
(c) $t^{2}=2.73 \times 10^{-3} \mathrm{x}$
(d) $\mathrm{t}=2.73 \times 10^{-3} \mathrm{x}$

Q 6. A hollow metallic sphere of radius 20 cm surrounds a concentric metallic sphere of radius 5 cm . The space between the two spheres is filled with a nonmetallic material. The inner and outer spheres are maintained at $50^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ respectively and it is found that 100 J of heat passes from the inner sphere to the outer sphere per second. Find the thermal conductivity of the material between the spheres.

Q 7. For a solid cylinder of length L 0 , area A conductivity varies with temperature Tas $\mathrm{k}=\mathrm{k}_{0}(1+\alpha \mathrm{T})$. If one end is at $2 \mathrm{~T}_{0}$ and other at T_{0}, find rate of heat flow?

Q 8. A rod CD of thermal resistance $5.0 \mathrm{~K} / \mathrm{W}$ is joined at the middle of an identical rod AB as shown in fig. The ends A, B and D are maintained at $100^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ respectively. Find the heat current in CD in Watt.

Q 9. Over a certain temperature range, the thermal conductivity k of a metal is not constant but varies as indicated in figure. A lagged rod of the metal has its ends maintained at temperatures T_{1} and $T_{2}\left(T_{2}>T_{1}\right)$ as shown in figure. Which one of the following correctly describes how T_{3}, the temperature at the mid-point of the rod, compares with T_{1} and T_{2} ?

(A) $T_{3}=\left(T_{1}+T_{2}\right) / 2$
(B) $T_{3}=\left(T_{1}-T_{2}\right) / 2$
(C) $T_{3}>\left(T_{1}+T_{2}\right) / 2$
(D) $T_{3}<\left(T_{1}+T_{2}\right) / 2$

Answer Key

Q. 1 d	Q. 2 c	Q. 3 d	Q. 410.03 hrs .	Q. 5 b
Q. 63	$\text { Q. } 7^{\frac{K_{0} A T_{0}}{L_{0}}\left(1+\frac{3 \alpha T_{0}}{2}\right)}$	Q. 84	Q. 9 d	

